Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

نویسندگان

  • Barbara Zielinska
  • David Campbell
  • Douglas R Lawson
  • Robert G Ireson
  • Christopher S Weaver
  • Thomas W Hesterberg
  • Timothy Larson
  • Mark Davey
  • L J Sally Liu
چکیده

A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exhaust Emissions and Performance of Diesel Engines with Biodiesel Fuels

The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines is receiving an increasing amount of attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential to reduce exhaust emissions. Transient exhaus...

متن کامل

Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

Environmental chamber (“smog chamber”) experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavyduty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selecti...

متن کامل

Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel.

Recent studies have linked atmospheric particulate matter with human health problems. In many urban areas, mobile sources are a major source of particulate matter (PM) and the dominant source of fine particles or PM2.5 (PM smaller than 2.5 pm in aerodynamic diameter). Dynamometer studies have implicated diesel engines as being a significant source of ultrafine particles (< 0.1 microm), which ma...

متن کامل

Detailed Study regarding the Biodiesel Pollution from Rapeseed Oil

Biodiesel production is a modern and technological area for researchers due to the constant increase in the prices of petroleum diesel and environmental advantages. A single cylinder direct injection diesel engine was fuelled with blends of biodiesel and diesel. Regulated emissions and performance data were generated, and a detailed characterization of exhaust emissions was performed. The use o...

متن کامل

Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 15  شماره 

صفحات  -

تاریخ انتشار 2008